Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1.

نویسندگان

  • Roger T Worrell
  • Lisa Merk
  • Jeffrey B Matthews
چکیده

Although colonic lumen NH(4)(+) levels are high, 15-44 mM normal range in humans, relatively few studies have addressed the transport mechanisms for NH(4)(+). More extensive studies have elucidated the transport of NH(4)(+) in the kidney collecting duct, which involves a number of transporter processes also present in the distal colon. Similar to NH(4)(+) secretion in the renal collecting duct, we show that the distal colon secretory model, T84 cell line, has the capacity to secrete NH(4)(+) and maintain an apical-to-basolateral NH(4)(+) gradient. NH(4)(+) transport in the secretory direction was supported by basolateral NH(4)(+) loading on NKCC1, Na(+)-K(+)-ATPase, and the NH(4)(+) transporter, RhBG. NH(4)(+) was transported on NKCC1 in T84 cells nearly as well as K(+) as determined by bumetanide-sensitive (86)Rb-uptake. (86)Rb-uptake and ouabain-sensitive current measurement indicated that NH(4)(+) is transported by Na(+)-K(+)-ATPase in these cells to an equal extent as K(+). T84 cells expressed mRNA for the basolateral NH(4)(+) transporter RhBG and the apical NH(4)(+) transporter RhCG. Net NH(4)(+) transport in the secretory direction determined by (14)C-methylammonium (MA) uptake and flux occurred in T84 cells suggesting functional RhG protein activity. The occurrence of NH(4)(+) transport in the secretory direction within a colonic crypt cell model likely serves to minimize net absorption of NH(4)(+) because of surface cell NH(4)(+) absorption. These findings suggest that we rethink the present limited understanding of NH(4)(+) handling by the distal colon as being due solely to passive absorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phorbol 12-myristate 13-acetate-induced endocytosis of the Na-K-2Cl cotransporter in MDCK cells is associated with a clathrin-dependent pathway.

In secretory epithelial cells, the basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl(-) secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (P...

متن کامل

Na-K-2Cl cotransporter gene expression and function during enterocyte differentiation. Modulation of Cl- secretory capacity by butyrate.

The basolateral Na-K-2Cl cotransporter (NKCC1) is a key component of the intestinal crypt cell secretory apparatus. Its fate during the transition to absorptive enterocyte and the potential impact of its altered expression on secretory output have not been addressed. In this report, NKCC1 mRNA was found to be expressed in rat jejunal crypt but not villus cells. Butyrate treatment of intestinal ...

متن کامل

Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine.

We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its ...

متن کامل

Chloride secretion in a morphologically differentiated human colonic cell line that expresses the epithelial Na+ channel.

Cell line models of colonic electrolyte transport have been extensively used despite lacking some of the characteristics of native tissue. While native colonic crypts absorb or secrete NaCl, immortalized cell lines only retain the secretory phenotype. In the present study we have characterized functionally and molecularly, vectorial fluid and electrolyte transport in the morphologically differe...

متن کامل

Ammonium homeostasis and human Rhesus glycoproteins.

The brain ammonium production is detoxified by astrocytes, the gut ammonium production is detoxified by hepatic cells, and the renal ammonium production plays a major role in renal acid excretion. As a result of ammonium handling in these organs, the ammonium and pH values are strictly regulated in plasma. Up until recently, it was accepted that mammalian cell transmembrane ammonium transport w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 294 2  شماره 

صفحات  -

تاریخ انتشار 2008